作者:Y.Peng, B. Y. Wu*, J. W. Zhang *, T. Chen* et al
关键字:Polymeric hydrogel, shape deformation
论文来源:期刊
具体来源:Chem. Mater. 2022, 34, 14, 6582–6592
发表时间:2022年
Living organisms can generate diverse three-dimensional (3D) morphologies and programmatically regulate their morphological evolution via the neurally controlled expansion and contraction of soft tissues. Although polymeric hydrogels have been regarded as an ideal experimental platform for biomimetic morphing due to their soft-tissue-like properties, it is still a tricky problem to quantitatively design their 3D morphological evolution, especially for inert polymeric hydrogels. In this study, we developed a muscle-inspired deformation system that could programmatically regulate the morphological evolution of undeformable inert polymeric hydrogels using large-deformable hydrogels as muscles, which contained smart poly N-isopropylacrylamide (PNIPAm) microgel and could be anchored onto any hydrogels via interfacial diffusion polymerization (IDP). Moreover, by programmatically regulating the anchoring position of the large-deformable muscle, the 3D morphology of kirigami-shaped hydrogels could further evolve to obtain a more complex 3D morphology. Surprisingly, when
the inert hydrogel was replaced by a shape-memory hydrogel, the 3D morphologies could be fixed and preserved for more than 1 month without any stress relaxation or swelling, even after removing the hydrogel muscle or external stimuli. Therefore, we believe that this deformation strategy will enhance our understanding of the life evolution of natural soft-wet organisms for developing intelligent soft materials such as shape-memory hydrogels, programmable deformations, and 3D biomimetic devices.