当前位置:群英聚首 >> 最新动态 >> 正文
张桢焱工作发表在Small
来源:石恒冲研究员个人网站 发布日期:2023-06-16

Abstract: 

The formation of biofilm and thrombus on medical catheters poses a significant life-threatening concern. Hydrophilic anti-biofouling coatings upon catheter surfaces with complex shapes and narrow lumen have demonstrated to be potential in reducing complications. However, their effectiveness is constrained by the poor mechanical stability and weak substrate adhesion. Herein, a novel zwitterionic polyurethanes (SUPU) with strong mechanical stablity and long-term anti-biofouling was developed by controlling the ratio of sulfobetaine-diol (SB-diol) and ureido-pyrimidinone (UPy). Once immersion in water, as-synthesized zwitterionic coating (SUPU3 SE) would undergo a water-driven segment reorientation to obtain a much higher durability than its direct drying one even under various extreme treatments, including acidic solution, abrasion, ultrasonication, flushing and shearing in PBS at 37 ℃ for 14 days. Moreover, SUPU3 SE coating could achieve a 97.1% of exceptional reducing protein fouling, complete prevention of cell adhesion and a long-lasting anti-biofilm performance even after 30 days. Finally, the good anti-thrombogenic formations of SUPU3 SE coating with bacterial treatment were validated in blood circulation through an ex-vivo rabbit arteriovenous shunt model. This work provides a facile approach to fabricate stable hydrophilic coatings through simple solvent exchange to reduce thrombosis and infection of biomedical catheter.



Copyright © 2005 Polymer.cn All rights reserved
中国聚合物网 版权所有
经营性网站备案信息

京公网安备11010502032929号

工商备案公示信息

京ICP证050801号

京ICP备12003651号